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Perturbation series are developed and mathematically justified, using a straight- 
forward perturbation formalism (that is more widely applicable than those 
given in standard textbooks), for the case of the two-dimensional inviscid Orr- 
Sommerfeld-like eigenvalue problem describing quasi-geostrophic wave in- 
stabilities of parallel flows in rotating stratified fluids. 

The results are first used to examine the instability properties of the perturbed 
Eady problem, in which the zonal velocity profile has the form u = z +pu,(y, z )  
where, formally, p < 1. The connexion between baroclinic instability theories 
with and without short wave cutoffs is clarified. In  particular, it is established 
rigorously that there is instability a t  short wavelengths in all cases for which 
such instability would be expected from the ‘critical layer’ argument of 
Bretherton. (Therefore the apparently conflicting results obtained earlier by 
Pedlosky are in error.) 

For the class of profiles of form u = x +puu,(y), it is then shown from an examina- 
tion of the O ( p )  eigenfunction correction why, under certain conditions, growing 
baroclinic waves will always produce a counter-gradient horizontal eddy flux 
of zonal momentum tending to reinforce the horizontal shear of such profiles. 
Finally, by computing a sufficient number of the higher corrections, this first- 
order result is shown to remain true, and its relationship to the actual rate of 
change of the mean flow is also displayed, for a particular jet-like form of profile 
with finite horizontal shear. The latter detailed results may help to explain at 
least one interesting feature of the mean flow found in a recent numerical solution 
for the wave regime in a heated rotating annulus. 

1. Introduction 
This paper considers some fundamental aspects of the quasi-geostrophic 

baroclinic instability problem. Apart from its frequent relevance in laboratory 
situations involving slow motions of an inhomogeneous fluid in a rotating frame 
of reference, this parallel-flow instability problem yields a theoretical description 
of processes known to be important in the earth’s atmosphere. It has already 
been studied extensively (see Pedlosky 1964a, Fowlis & Hide 1965). Simple 
baroclinic instability theory accounts qualitatively for the way in which many 
large-scale weather systems obtain their kinetic energy. For readers not familiar 
with the type of dynamics involved, a brief description is given in a.ppendix A. 

18 F L M  40 
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Of particular interest are forms of the relevant two-dimensional eigenvalue 
problem, (2.1) below, that are non-separable because of the presence of horizontal 
as well as vertical shear in the mean zonal current {u(y, z) ,  0,  O}. It is precisely 
such problems that can be expected to model the interesting kind of simultaneous 
potential and kinetic energy transformation known to play a role in the main- 
tenance of the mid-latitude westerlies, the associated horizontal eddy flux of 
zonal momentum corresponding to a negative Austausch coefficient. 

But the mathematical difficulties have for some time remained a serious theo- 
retical obstacle. Valuable progress has been made with ‘ two-level models ’, 
equivalent to use of the crudest possible finite differencing in the vertical (Eliasen 
1961; Pedlosky 19643); the important recent work of Stone (1969), using such 
a model, will be mentioned later. Another approach that has been used, e.g. by 
Eady (see Green 1970) and by Brown (1969a), is to solve for particular numerical 
cases by the use of purely finite-difference methods of relatively high resolution. 
These avoid a priori assumptions about the vertical structure, but do not easily 
yield generality or insight. 

I n  this paper we present a perturbation formalism ($  3) that was developed 
in order to provide a flexible analytical approach to the non-separable eigenvalue 
problem (2.1). The method is applied to a discussion of the perturbed Eady 
problem, in which u(y, z )  = z+pu,(y, z ) ,  p being the perturbation para- 
meter. 

The idea of perturbing about a simple form of (2.1) is not new, being implicit 
for instance in some unpublished work of Stern & Magaard (see Magaard 1963), 
and having also been put forward by Pedlosky ( 1965). In  the latter’sinvestigation, 
first correction terms for the perturbed Eady problem were obtained for small p 
by means of a somewhat elaborate initial-value approach, which brings in the 
(singular) complete set of unperturbed eigenfunctions in a way reminiscent of 
classical perturbation theory. By contrast, the present approach is relatively 
straightforward, and we can obtain the higher corrections as well, yielding results 
valid for aJinite range of p. An example for which such calculations were carried 
out in detail is given in $ 7 below. A more fundamental consequence is that know- 
ledge of the higher corrections enables us to justify our procedure in a mathe- 
matically rigorous way ( $  4). 

The latter point gains added importance in view of the fact that Pedlosky’s 
(1965) conclusions on the perturbed stability properties turn out to be in error 
(although that, indeed, becomes clear upon comparison with the numerical 
results found by Green 1960, for a particular example). 

In  $5  we re-examine the perturbed stability properties. The main results 
have already been predicted by Bretherton (1966a, p. 333), using an indirect but 
powerful argument in which the idea of the ‘ critical layer ’ plays a key role. Our 
analysis can be looked upon as providing a mathematically rigorous expression 
of, and so a clear justification of, Bretherton’s argument. 

I n  $ 6  we go on to develop a linear-theory explanation of the previously 
mentioned negative Austausch coefficient, for profiles of the form u = z +pu,(y) 
where ul(y) is an unspecified function. The discussion is based on the O(p) terms, 
and identification of corresponding physical effects. Evidence that higher terms 
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do not change the qualitative picture in cases of interest is then obtained ( $ 7 )  by 
computing a sufficient number of terms in two ‘realistic’ examples, for which 

It is worth mentioning that the results for the first example have recently 
been compared, and show excellent detailed agreement, with corresponding 
results independently obtained by Brown (personal communication), using his 
finite-difference procedure (Brown 1969a). 

2. The eigenvalue problem 
Attention will be focused on a problem that is idealized but adequately 

embodies the fundamental properties under discussion. As will become clear, 
refinement would be essentially straightforward. 

Consider small-amplitude frictionless adiabatic disturbances to a parallel 
flow u(y,  x )  of stably-stratified Boussinesq liquid, whose horizontally averaged 
buoyancy or Brunt-Vaisala frequency is N(z) .  The flow is in the x-direction and 
is limited by boundaries at z = 0 ,  H and y = 0, L, on which the normal velocity 
must vanish; x, y ,  z are Cartesian co-ordinates in a frame of reference rotating 
about the vertical z-axis with angular velocity if. A dimensionless combination 
of importance in the problem is 

f”2 
E ( Z )  = ~ 

N2H2 ’ 

which is formally of order unity, expressing the anticipated importance of both 
buoyancy and Coriolis forces. (But with our definition of L, numerical values of E 

are more like n2 in cases of  interest.) Compressibility would introduce no essential 
modification provided that H is very much less than the density scale height, and 
the presence of a horizontal rotation component will have negligible effect if 
H I L  1 .  Also, very crudely, one could regard the rigid upper boundary as the 
beginning of e.g. an idealized ‘stratosphere of infinite static stability’. 

The well known eigenvalue problem for the perturbation pressure 

Re q(y, z )  eik(z-ct) 

of a quasi-geostrophic normal-mode wave disturbance can be written in dimen- 

(2.la) 
sionless form, as 

(u-c)9j5-u,pl = 0 on z = 0,1 ,  (2 . lb)  

(u - c )  [(%), + Pyl/ - k2Y1 + qJY) 2) 9j = 0, 

q = O  on y = O , l ,  (2 . lc )  

where the dimensionless wave-number k is real and the complex amplitude 
p(y , z )  and phase velocity c are sought as eigenfunction and eigenvalue. The 
function qJy ,  z ) ,  a property of the basic flow analogous to the - uyy of the classical 
Orr-Sommerfeld problem, is defined in appendix A (ii), which briefly sketches 
the derivation of (2.1). The boundary conditions (2.1 b) reflect the active role 

18-2 
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that can be played by horizontal boundaries in the present problem, due to the 
importance of vertical vortex-tube stretching. 

Since (u - c)-lq2/ (see (A 6)) is not in general of the form func (y) + func ( z ) ,  nor 
(u - c)-lu, independent of y, the problem is generally non-separable in the co- 
ordinates y, z. Certain neutral separable solutions (c real) are possible if u is of 
the form func (y) x func ( x ) ,  andp (see (A 6)) is zero, but arenot of great importance 
in themselves. 

As is known from particular solutions, such a system can exhibit more than 
one type of instability (Phillips 1963, Q 3a),  but in speaking of the ‘baroclinic 
instability problem’ one is thinking of situations in which the vertical shear u, 
is the most essential feature of the basic velocity profile. Because of hydrostatic 
and geostrophic (pressure-Coriolis) balance, the vertical shear is associated with 
a transverse horizontal density gradient, and thus represents a store of available 
potential energy (Lorenz 1955). Under suitable conditions some of this mean-flow 
energy can be released by a growing disturbance in the manner described in 
appendix A(i), as was first clearly shown by the independent mathematical 
analyses of Charney (1947), and Eady (1949) (see appendix A(iii)). 

We shall take (2.1) as our starting point. Although, in view of the afore- 
mentioned controversy, some care will be taken to construct solutions of (2.1) 
in a mathematically rigorous way, one should remain aware that (2.1) is already 
the result of several formal approximations. (But it can be noted that our per- 
turbation approach could be used as the basis for a mathematical justification 
of the latter too, if desired; in that connexion see the footnote to appendix D (ii).) 

The assumption of normal-mode form for the solutions needs little discussion 
here, because the results we shall be interested in concern positive cases of in- 
stability. That the existence of instability in the normal-mode sense must imply 
instability in the solution to the general initial-value problem hardly needs 
proof, but in any case the kind of analysis needed is not essentially different from 
that given e.g. by Pedlosky ( 1 9 6 4 ~ )  and Burger (1966). 

3. The perturbation formalism 
The convergent perturbation series to be obtained below are based simply 

upon the use of a generalized Green’s function (Courant & Hilbert 1953, p. 354). 
This device seems more natural, and is certainly much more widely applicable, 
than the standard eigenfunction expansions elaborated upon in textbooks on 
theoretical physics. In  particular, it does not depend upon a complete set of 
unperturbed eigenfunctions; cf. Courant & Hilbert (1953, p. 343), Morse & 
Feshbach (1953, p. 1034), Pedlosky (1965, 9 1). 

The problem to be considered in detail in this paper is that for which 

u = x+PUl (Y ,  z ) ,  ql/ = ru411/(Y> z ) ,  (3.1) 

where ,LA is the perturbation parameter. That is, we shall be perturbing about an 
Eady solution, (A 7) .  

Note from (A 6) that a transverse gradient of the Coriolis parameter, or p-effect, 
can be included, as long as within the radius of can be written in the form 
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convergence of the perturbation scheme. For simplicity, ~ ( z )  will be assumed to 
remain constant. But it should be realized that there would be no formal difficulty 
in writing B = const. +,ml(z), or in perturbing about any other (e.g. a separable 
neutral) solution, etc., etc. 

Because of the branch points in the k-dependence of the Eady solutions at 
k = k, (A S), it turns out that two cases must be considered separately, namely 
k =k k ,  and k = kA.. 

(i) The  case k + k, 
It seems natural to pose 

P = P0+PP1+PZP2+ . * a .  ( 3 . 2 ~ )  

Regarding c as the eigenvalue and the other parameters as fixed, one would also 

( 3 . 2 b )  
expect that 

On substituting (3 .1 )  and (3 .2 )  into (2 .1 )  and equating like powers of p, a suc- 
cession of boundary value problems is obtained, whose details are given in 
appendix B. Here we abbreviate the lth problem to 

L(PJ = 4 ,  ( 3 . 3 ~ )  

c = c 0 + p c 1 + p ~ c , +  .... 

where 

D(vl)  = El+-- cz Po = B,, on z = 0, 1, I (z-co)2’ - 
(3 .3b )  

\ rpz = 0 on y = 0,  1 ,  (3 .3c )  

Of course lo = B, = 0, so that { Q ~ ~ , C ~ )  is an Eady mode. For Z 2 1, 4 and Bi 
involve qo, ..., y ~ ~ - ~  and co, . .., clel only, as can be verified from (B 2 ) .  

Now the homogeneous problem complementary to (3 .3 ) ,  for 1 2 1, is the same 
as the zero-order problem (and its adjoint), and has the non-trivial solution cpo. 
This means that the inhomogeneous problem (3 .3 )  has a solution only if the 
inhomogeneity {A, Bz} satisfies a certain condition of orthogonality to yo  (more 
generally, to the corresponding solution of the adjoint problem). It is that 
condition, of course, that determines cz at each stage. 

What the orthogonality condition must be can be found by formally multi- 
plying ( 3 . 3 ~ )  by po, integrating from 0 to 1 with respect toy  and z, integrating by 
parts twice, and then using the boundary conditions and the fact that L ( F ~ )  = 0. 
Thence 

-//Po I ,dy dz + / d y  [ P0Bz]”= s= 0 = 0. 

Referring to (3 .3  b )  and using the identity (A 13) we can rewrite this as an explicit 

Here po is normalized as in (A 7).  For 1 = 1 ( 3 . 4 ~ )  gives the first correction for c ,  
in terms of rpo only; it will be discussed in detail in $ 5 .  
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solution. It is also sufficient; when ( 3 . 4 ~ )  is satisfied a solution is 
Equation ( 3 . 4 ~ )  was derived as a necessary condition for (3.3) to have a 

where @(y, z ;  7, [)is a Green'sfunctionin thegeneralizedsense (Courant & Hilbert 
1953, p. 354). Here @ is a solution of 

a@) = AVo(Y, z )  V o h  5)  - S(Y - 7) Qx - 0, ( 3 . 5 4  

@ = O  on y=O,1 .  (3 .5c)  

D ( @ ) = O  on z = O , 1 ,  (3 .5b)  

L and D are'understood to operate on (y, z )  and A is a constant defined so that 
(3.5) is soluble. It can be seen that A is given by 

As yet there is arbitrariness in @ and qZ to the extent that a constant multiple 
of yo may be added. (This corresponds to multiplying q~ = &&pz by a constant, 
1 + O(,u).) It seems natural in the present context to remove this arbitrariness 
by requiring that pz be 'as small as possible', in terms of a norm such as 

The asterisk denotes the complex conjugate. That norm is minimized when pz 
satisfies 

JJPz"o* = 0. 

Correspondingly, we shall choose @ so that, for all 7, 6, 

@ is uniquely defined by (3.5) and (3.6); an explicit representation is given in 
appendix B. 

In summary, the solution to the perturbed problem is given formally by 

where all the terms €or 12 1 are defined by (3.4), together with the recursion 
formulae written out in appendix B. 

(ii) The cme k = kN. 
Equation ( 3 . 4 ~ )  shows that the series just derived fail if co = +, i.e. at  the critical 
neutral wave-number k = k,. But expansions in powers of A = ,u* turn out to 
be appropriate : qJ = ploN+AplN+h2yf+ ..., (3.7a) 

c = i+hcF+A%g+ ...' (3.7b) 
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where cpr and cK are not to be confused with the previous lth coefficients in the ,u 
expansions. Although there are some features of interest, the essential ideas are 
the same, and the details are relegated to appendix C. 

Dependence of c, on the lower eigenfunction corrections 

As is easy to verify, ( 3 . 4 ~ )  depends on y,,,yl, ...,ytPl. Although (3.4~) is the 
simplest and most convenient form for computational purposes, it can be 
noted that as a consequence of the self-adjointness of L, c may be found in terms 
of yo, . . . , qr+n only, where [*1] denotes the largest integer < 41. That can be shown 
by first forming the equation 

and then integrating by parts, using the boundary conditions. Alternatively and 
more elegantly (L. Segel, private communication; Morse & Feshbach 1953), the 
result can be derived from variationa,l considerations. This generalizes a result 
given by Joseph (1967). 

4. Mathematical interpretation and justification of the formulae 
4 is singular at  x = co, and so it is necessary to define the meaning of expressions 

such as (3.4u, b)  when the unperturbed eigenvalue c, is real, as is the case for 

That is easy if we assume that u1 and qlu are analytic functions. The whole 
process can then be carried out in a domain 9 = rz x rv, where Psis the interval 
0 < y < 1 ,  and Fz is a contour in the complex z-plane which joins 0 and 1 and 
avoids z = c0 (see figure 1). rz could depend on y ,  and must also be chosen so 
that u1 has no singularities between Pa and the real axis (the shaded region). 
Once an appropriate rZ has been chosen, then (3.4) (and (C 6)) are unambiguous 
even for real G,. Clearly @ can be understood as being defined by (B 3) of appendix 
B; it is convenient to suppose that both x and g lie on re. 

Having chosen an appropriate B (which need not be complex if co is not real), 
one can prove, for < some finite positive ,uo, that the c expansion is con- 
vergent, that the expansion is uniformly convergent over 9, and that the 
expansions do in fact represent a solution in 9 of the original problem (2.1). The 
proof is quite straightforward but somewhat tedious. It is given in appendix D for 
k $. k,; the proof for k = k,,, is similar. 

After the perturbed c = ~ p l c ,  has been found for given p within the radius 

of convergence, it must then be asked whether any point z,(y) for which u ( y ,  z) = c 
falls within the shaded region or on the real axis. If so, the eigensolution on 9 
is generally not the continuation of a solution regular in the physical domain 
of real y and z. If not, it is. (That the eigenfunction q, as opposed to the terms in 
its representation Z,ulq+, cannot then be singular in, or on the boundary of, the 
shaded region, will probably be obvious to the reader. In  any case, it could be 
proved using continuation, upon substituting for c (now known) in (2.1 a )  and 

k 2 k1V. 

oi, 

0 
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e.g. for ( u - c )  a,B (known) in (2.16)) thus considering (2.1) as an inhomogeneous 
boundary value problem for a, in which (u - c)-l qg can be taken as a known 
regular analytic function of z for each y.) In  this latter case, p being smoothly 
behaved for real y and x in 0 < (y,x) < 1, it must represent a physically 
meaningful solution, and we shall speak of an ‘admissible ’ eigensolution.? 

If the perturbed c happened to fall exactly on the real axis, further discussion 
would be needed. However, that possibility seems to be of little interest. 

FIGURE 1. An example of an ‘admissible’ (for ,u, 0) configuration in the z plane; r,(y) 
must bo chosen so that ul, as a function of z ,  has no singularities in the shaded region for 
any y in rY. Possible paths of the point z, as p, varies are illustrated by the dotted lines. 
Note that z,(,u) will in general be multivalued, and that that might possibly require extra 
care in the choice of I’, for a finite value of p. 

5. The first-order instability properties of the perturbed Eady problem 
As a first, simple application, we discuss the stability of the mean flow 

u = z + pul ,  for p 4 1 and any sufficiently differentiable function u,(y, z). It will 
appear below that the first-order results are qualitatively useful over a fair range 
of p values of practical interest, especially for the short waves k > le,, (A 8).$ 
For k 3 k ,  it is also assumed that u1 is analytic. 

t When solutions are found that have Im (c) + 0 and are admissible by our definition, 
they must occur in complex conjugate pairs, Im (c) < 0, corresponding to two appro- 
priate choices of rZ. One solution is ‘damped’ (but not dissipative !) and the other amplify- 
ing. The latter solution is tho physically interesting one, but to be self-consistent one 
should also admit the former under the definition; we emphasize this point only because 
confusion about it sometimes seems to occur in the literature. Any non-singular normal 
mode of an approximate (e.g. non-dissipative) problem must of course be expected to 
represent a physically meaningful approximate solution, in the natural sense that over 
a finite time interval it approximates a solution (as opposed to a normal mode) of whatever 
are being regarded as the exact equations, e.g. equations with small diffusion coefficients. 
See the related discussion by Lin (1961). 

$ It is somet,imes said that the basic quasi-geostrophic approximation (appendix A (ii)) 
becomes invalid at short wavelengths. However, it can be shown that that is not the case; 
the physical reason is that the height scale of the wave (see appendix A(i)), and hence the 
mean flow vertical velocity difference seen by the wave, diminishes as the wavelength 
for large enough k. 
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When k $; kN, (3.2b) is the appropriate expansion. Referring to ( 3 . 4 ~ ) ~  we have 

K2( 1 - Co)2 - 1 
c = co+ KP + 0(P2), 

K ~ ( C ~  - Q) 

where, as can be verified from (B 2), 

From (A 6), qlw is related to u1 by 

q1ar = PI. - ‘Ulzz - Ularar’ (5.3) 

with the obvious definition of the constant PI. Only the zero-order eigenfunction 
po, given by (A 7) ,  is involved in this first correction to c,. 

When k = k,, (3.7 b )  is appropriate. More explicitly, it may be shown (appendix 
C) that for k = k, 

(5.4) 

where K ,  is defined by (5 .2 ) ,  with yo  = pf and co = i, as in (A lo).? 
When c, is real these formulae must be interpreted in accordance with the 

discussion of $4. The most interesting thing about them is that, in the short-wave 
neutral regime k 2 k, of the zero-order problem, Im (c) is non-zero in general, 
even though co and q~,, are real. For k > k, the imaginary contribution to c comes 
entirely from the half-residue at z = co of the first integrand in (5.2). Taking the 
rz shown in figure 1, we have 

Note that, to first order, Im (c) depends on qlw at z = co only. Whenever (5.5) is  
positive, we have anadmissible amplifyingmode (as well as its ‘damped ’ conjugate, 
by the conjugate choice of rZ). If ( 5 . 5 )  is negative, there is no admissible normal 
mode to which yo is  a first approximation. 

The half residue can be given an illuminating physical interpretation as a 
critical-layer quasi-potential-vorticity flux, following the discussion given by 
Bretherton ( 1 9 6 6 ~ ) .  His argument shows clearly why instability is to be expected 
whenever l,uqlV pt dy has the appropriate sign at  the unperturbed critical level 
2 = co. 

The factor multiplying the integral in (5 .5)  is positive for the lower wave 
co < fr, and negative for the upper wave co > 4, as can most easily be seen from 
(A 13). Therefore, the lower wave is destabilized by a positive weighted-average 

f The formula (5.1) could have been obtained very simply, although not rigorously, by 
the Tollmien argument (Lin 1955, p. 122). One then has to ussume the existence of neigh- 
bowing eigensolutions. (Conversely, the present type of analysis justifies the Tollmien 
argument). It is possible to derive (5.4) in a similarly simple way if one is prepared to 
assume also, writing c - 4 5 A(k,  p),  that (aA2/ap),  = - (aA2/i3k)p (ak/ap). at the singular 
point {k = k ~ , p  = 0). (The latter relation is thus true, but its truth does not seem 
obvious u priori.) 
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quasi-potential vorticity gradient s,ue-lqlUIz=C, sin2 mry dy, such as might, especi- 
ally for m = 1, be associated with a horizontally-jet-like profile. The upper 
wave is destabilized by a negative gradient. 

With regard to the interpretation of (5.4), it is evident that in virtue of the 
two sign possibilities in (5.4) for euch Fz, there is always, in general, exactly one 
conjugate pair of admissible solutions at k = k,. An exception occurs when 
K,,,,u is real positive (which cannot be so unless sqlvsin2mnydy = 0 at z = i). 

These results and the related arguments of Bretherton ( 1 9 6 6 ~ )  greatly clarify 
the connexion between baroclinic instability theories with and without ‘short 
wave cutoffs’; see also Bretherton (1966b). (This connexion, or seeming lack 
of it, had puzzled many investigators in the past.) They also show that the con- 
clusion stated by Pedlosky (1965, abstract), that ‘only the vertically anti- 
symmetric and horizontally symmetric component of the velocity deviation 
affects the stability of the flow’ (to O(,u)),  is incorrect. As can be seen from our 
discussion, the vertically (and horizontally) symmetric component of qlU, and 
hence of u1 in general, is also involved, at short wavelengths.? 

Examples 

It is of interest first of all to apply (5.1) and (5.4) to the simple case u1 = 0, 

pqlY = = const., for comparison with the results of Green (1960; see also Garcia 
& Norscini 1969). A comparison is presented in figure 2 for ,m--1qlU ( = €-‘/I) = 1.  
The y-dependencc has been suppressed by replacing sin2mny by 9, and setting 
m = 0 elsewhere, so as to correspond to Green’s y-independent formulation. The 
sign of qlv is positive throughout the flow. Accordingly, the lower wave is de- 
stablized and the upper wave disappears. The first-order formulae are quite 
accurate for this finite perturbation, except a t  the longer wavelengths and, for 
Re (c), at  k = k,. As can be shown from symmetry, the first-order change in 
growth rate is zero for k < k,. 

It is not surprising that perturbing about the Eady solution does not yield 
the long-wave phenomena discovered by Green, since the ,8-effect is dominant 
in these very long waves, and cannot be regarded as a perturbation. Indeed, it 
may be verified in general that (5.1) is not uniformly valid near K = 0, the first 
correction behaving like K - ~ .  The ‘critical’ K (cf. Garcia & Norscini 1969) is, 

t Nor, it should be added, does the statement appear to be true for the long-wave end 
of the spectrum considered in Pedlosky’s (6.6). It certainly seems inappropriate, in 
principle, because of thc fact that the perturbation mcthod is not uniformly valid in the 
limit of small total wave-number K ,  as will be remarked upon shortly. The corresponding 
results of Grean (1960) and Garcia & Norscini (1969) seem, in a practical sense, a sufficient 
counter-example. (Pedlosky’s analysis does include the ,&effect, via a trivial modification, 
and hence should relate to Green’s problem for small 8.) 

It should perhaps be pointed out that the argument given in $ 5  of Pedlosky’s paper 
appears to be in crror (F. P. Bretherton, privato communication). It docs not soem to be 
a straightforward matter to produce a corrected version. For instance, supposc that 
( cN,  c:) is the conjugate pair of admissible perturbed eigenvalues that is found in general 
at k = k r ~ ,  as was indicated above. Then (cf. (3.5), etc., of the paper in question) the 
quantities -k2cNc:, -ilc(cN+cg), are not regular analytic functions of p at p = 0 and 
k = k ~ ,  except in certain special cases. That can be seen immediately from (5.4) ; see also 
appendix C. 
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however, qualitatively indicated by the condition Re (co +,ucI) = 0, even though 
the O(p) change in Im (c) is zero. Note that if the y-dependence is reintroduced, 
K cannot approach zero; the limit K + O  implies infinite zonal and meridional 
length scales, and so is not of very great interest in practice. (See footnote 9 6.) 
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scaled growth rate K Im (c) = e-*k Im (c). Note that the first correction to the growth rate 
is zero for k < k ~ ,  but not for k = k N ( @ )  or k > k N .  For accuracy of comparison, the 
graphs of Green's results have been re-drawn, using his original data; in the case e-la = 3 
(not shown) the agreement A t  short wavelengths is even closer, upon correcting an in- 
accuracy in Green's corresponding published figure (op. cit.,  p. 242; Green, private 
communication). 

The formulae are illustrated further by the calculations presented in figure 3. 
There ,8 = 0, m = 1, e = 9, and (a )  u = zS(l-2y3 and (b )  u = xs-y:, where 
ys = (y- $), 2, 2 ( 2 - 4 ) .  
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In  the first example, (a ) ,  it happens that ql/ = 0 at z = 9. There is a critical 
neutral mode (which, incidentally, is a separable solution). The corresponding 
wave-number kh in figure 3 was estimated from the formula 

which ca.n be established by the perturbation method (or again, obtained heuristi- 
cally by the Tollmien argument). The perturbation formulae yield no admissible 
perturbed normal modes for k > k,, a t  O ( p ) .  

0 

-0.3 L 

h 

Y 
0 

E 
H 
4 

5.6) =6*78 

Wave-number k E.A.P. 

(= 6.48) 
(kN) 

FIGURE 3. Examples of perturbed growth rate and phase relocity curves for the profiles 

calculated from (5.1), except at the Eady neutral point (E.N.P.), where (5.4) and (5.6) 
were used (a). Note that k = 0 means that K = e - b ,  not K = 0. In these calculations 
t /na  = 0.912, and rn = 1 (gravest mode). 

That probably means, in this example, that there are indeed no eigensolutions 
for k > I&, but that unstable modes exist for k < kh even though the Eady 
neutral waves do not serve as first approximation to some of them. This tentative 
interpretation is confirmed by perturbing about the neutral separable solution 
(McIntyre 1967). 

The second example ( b )  has a non-zero potential vorticity gradient at  z, = 0 
as well as elsewhere. In  this respect it is a less special case. The short wave in- 
stability appears in the same way, and for the same reason, as in Green's problem. 
Again, the correction to the growth rate is zero for k < kN, by symmetry. 
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6. The tendency of baroclinic waves to generate a counter-gradient 
momentum flux 

Consider a mean flow that is baroclinically unstable when ,u = 0 ( E :  > n2/4a$; 
see (A 8)) with horizontal shear that is independent of height: 

Then ( 5 . 3 )  reduces to 

This includes the cases u = z + (0.4,0-5) sin2my examined in detail in 9 7, which 
bear sufficient qualitative resemblance (although that point should not be pushed 
too far) to zonal mean profiles both in the atmosphere (Lorenz 1967) and in 
laboratoryanalogues (Williams 1969;figure 7b, c be1ow)for onetohopeforinsights 
that are heuristically useful. For this mathematically simplest way of introducing 
horizontal shear it will prove easy to see, in quite an elegant degree of generality, 
its first-order effect on the horizontal wave structure and the associated momen- 
tum flux or Reynolds stress component, -pdv' .  

The result that will be obtained below could be simply expressed by saying 
that, to first order, the horizontal phase of a gravest (m = 1) unstable Eady mode 
is distorted in the horizontal by the differential advection uly in the 'obvious' 
sense (see figure 4), and that that effect is guaranteed to predominate, in any 
given case, provided B is greater than some number e0 ( =- n2/4&) formally of 
order unity. (This last form of proviso is always sufficient, but is not necessary 
in ail cases, in particular when u1 has the simple form uy2 + by implying that qly 
is constant. Since e cc L2 one may think of e > B,, as meaning that the wave is not 
too closely constrained laterally.) 

The result and its physical interpretation are not really obvious without the 
analysis, since the instability mode involves a subtle balance between advection 
and propagation effects. (Recall in that connexion that for a barotropic, or 
classical inviscid shear instability, the phase lines bend oppositely to the 'obvious 
way '.) The perturbation method permits an unambiguous discussion of how 
that balance is altered, under various circumstances, by introducing horizontal 
shear. 

A horizontal structure of the kind illustrated in figure 4 is of interest because 
the associated Reynolds stress - p m  transports x-momentum against the 
mean gradient uy, as can be seen immediately from figure 4c. Such a process 
is known to be important in the large-scale atmospheric zonal momentum balance 
in middle latitudes (Phillips 1963, p. 152). 

The trend revealed by the O(p) terms will be borne out by the finite ,u calcula- 
tions for u1 = sin2 ny presented in § 7. 

Before turning to details, we should point out that the stress -ppu12r' is not 
the only significant mechanism of zonal momentum transfer, in the type of 
rotationally dominated flow under consideration. This point will be discussed 
in § 7. It is true, however, that for such flows the vertically averaged momentum 
transfer is described completely by the vertical average of -pm. 

___ 
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The expression (3 .4b) ,  with 1 = 1, may be written 

= % I +  Pl,, (6.2) 

say. We are perturbing about an unstable wave, with k < kLv, and the expressions 
are uniformly valid in the real, physical domain. 

- +  \ \, \, .L ' 

U X X 

' u  X X 

(u) y-dependence (b) Total 
of velocity profile streamlines 

(c) Disturbance 
streamlines 

FIGURE 4. Schematic diagrams representing the wave pattern in some given horizoiital 
plane, for two hypothetical mean-flow velocity profiles u = z +pul(y) whose y-dependences 
are depicted on the left. 

I n  virtue of (A 2) and (A 5), the lines of constant phase in figure 4 are the same 
as the lines of constant phase of Re {p' eik(3C-ct)} in a horizontal plane. The shape of 
the latter is given by the y dependence of - p h ( ~ ) ,  = -ph (q.+,+ppl)+O(p2), 
at given z. It is convenient to consider the phase of (vo + p v l )  relative to the phase 
of yo,  the latter phase being independent of y .  Call this relative phase p a ;  then 

Consider the gravest mode m = 1. Take u1 = u l ( y ) ,  and substitute (6.2) into 
(6.3). The boundary contribution - QB to - @, arising from the second term in 
(6.2), may be written, using the form (B 3) for @ and recalling (A 7) ,  as 

l m  
sin 7ry 71= 

-- - X O,(z)Cnsinn~y+func(z)+O(p), ( 6 . 4 ~ )  
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where 

and 

C, = 2 [u l ( y )  sin ny] sin n n y  dy,  1: (6.4b) 

( 6 . 4 ~ )  

the second (and irrelevant) contribution to (6.4a) being the n = 1 term. 
Now if all the 6, were positive and equal, (6.4a, b )  would show at once that - a,, 

at each height z, would be exactly proportional to u l ( y )  (to within an additive 
function of 2). 

The 6, are not equal, but it is possible to show after some manipulation of 
(6.4c), with the use of (B 3 b )  and (A 15), that for k < k, and given e, z, 

62 > 8, > 64 > ... > 0. (6.5) 

In  words, the y-dependence of - Q, i s  qualitatively similar to, but more ‘smoothed 
out’ than, the y-dependence of ul, for any sufficiently simple ul (y) .  Note also that 
a@.,/ay = 0 at y = 0,1,  as indeed must be true of a@/@ because of the boundary 
conditions. (In establishing (6.5) we use among other things the fact that 
p-2-p-1cothp c0, and d(p-2-p-lcothp)ldp > 0 for p > 0.) 

The remaining contribution to Q, namely CD,, is given by another expression 
of the form ( 6 . 4 ~ )  with, say, CA, 6; instead of C,, 6,. The C; are given by (6.4b) 

Let u l ( y )  be given, such that CC, sin n n y  ( =k 0)  and ECi sin n n y  are uniformly 
and absolutely convergent (a very mild restriction), and either let ~1 be held 
constant such that Im (co) $; 0 or, alternatively, fix attention on the fastest 
growing mode. Then we can prove that, uniformly in z, (max,QI-min,Qr)/ 
(ma% QB - min, QB) = O(s-l) as e --f co. This can be interpreted as implying 
that, for e > some eo independent of z, the qualitative resalt obtained for Q., also 
applies to Q, as was to be shown. (Here one starts by establishing that, as 
e -+ co under the stipulated conditions, 8; = O( 1) uniformly in n 2 2 and z, 
whereas, for any given n 2 2, 8, 2 e x  a positive quantity dependent on n but 
independent of 8, z.)? 

Note that the u1 contribution in (6.2) that gives rise to QB does come from 
a term representing advection, by the mean flow, of the wave pattern; more 
precisely, of the disturbance ‘boundary potential vorticity ’ (Bretherton 1966 a ,  

We did not investigate whether or not QT actually does tend to oppose QB 
(as far as the y-dependence is concerned). A few numerical calculations suggest 
that, when u1 = sin2ny, Qr does oppose Q,, at some but not necessarily all 

t We remark that the singular limiting behaviour of cf, can be thought of as reflecting 
the physical unreality of coherence over width L of an Eady mode (A7) when L% NH/f ,  
the dominant zonal wave-length. Even the slightest amount of horizontal differential 
advection pul(y) will disorganize such a mode if the channel width is too large; conversely, 
if there are  modes in the presence of slight horizontal shear, (A7) will no longer represent 
a first approximation to any of them (cf. Stone 1969). The same remark applies to the 
singular limit K -+ 0 mentioned in $5. 

3 3). 
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heights z. It is noted here that the part of CD, due to an O(p) p-effect is y-inde- 
pendent and therefore irrelevant. Also, if u1 is of the special form ay2+ by, then 
all of a, is y-independent and so irrelevant. 

7. Some finite-p results, and the effect on the mean flow 
A pertinent example of the simple type of profile discussed in 9 6 is 

u = z+psin2ny. (7.1) 

We take f i  = 0, e/n2 = 1.62 (e = 16), and evaluate a number of terms of the series 
defined by (3.4)) etc., for m = 1 and k = k,, the zonal wave-number at which 
the zero-order solution (A 7) has maximum growth rate Ic Im (co) for the chosen 
value of e. From appendix A(iii), k, = 6.117, K = 1.719, co = ++0*179i, 
k,Im(c,) = 1.09. 

The first few terms of the c expansion are found to be 

c = 0.5 + 0.179i + 0.591,~ - 0.11 0ip2 + 0.081,~’ - 0. 193ip4 + . . . . (7.2) 

Thus the growth rate k,Im(c) is reduced by O(p2), and the phase velocity 
is increased. (Most of the O(p) contribution to the latter, however, is merely 
a consequence of the increase in the average u as p increases.) Presumably the 
wave we are considering is not the dominant wave for the modified profile. 
But the discussion in $ 6  did not depend on the growth rate being maximized 
with respect to k, and there seems no general reason to believe that any essential 
features will be lost. 

The c and cp expansions were summed for p = 0.4 and p = 0-5, giving, in 
particular, c = 0.746+0-156i and c = 0-82,+0-14,i respectively. For com- 
parison, truncation to the terms exhibited in (7.2) gives c = 0.742 + 0.156i and 
c = 0-806 + 0.139i respectively, which already come close. Eleven terms were 
actually calculated, but the last few terms were not, and did not have to be, 
obtained very accurately. (As one might expect, the higher eigenfunction cor- 
rections take on an increasingly complicated spatial structure.) Their main use 
was as a check on convergence, which appeared safe to an accuracy of 1 or 2 % 
for the p = 0.4 case,? although less good when p = 0.5. Only the ,U = 0.4 results 
will be presented in detail; those for p = 0.5 are very similar. 

7 The independent finite-difference calculation by Brown mentioned in $ 1, for p = 0-4, 
was done on a 20 x 40 (0 < y < 4, 0 < z 6 1) grid and agrees with our p = 0-4 results to 
better than our roughly estimated accuracy. His c agrees with our value (0.746 +0.156i) to 
three figures. The more stringent test of fitting Iylrnax and then comparing detailed results 
for - (u’v’)~ gave [ - ( U ’ W ’ ) ~ ] ~ ~  = 80.3 (cf. our value 81.0, 1 yo higher) at bottom centre, 
and, at top centre, - (u’v’)~ = 38.9 (cf. our value 38.8). The contour printout from which 
the contours in figure 5d below were drawn has a resolution of 41 x 21 points for the half 
space, and the contours it defines are consistent with Brown’s grid point values at  each 
point except for a negligible (0.2 yo of max.) inconsistency at the point 8Oy = 5,202 = 18. 

It should be pointed out that Brown’s calculation shows one thing that ours cannot, 
namely that the wave under consideration is in fact the fastest growing quasi-geostrophic 
instability at  the given value of k.  (Brown’s method amounts to integrating the linearized 
Fourier-transformed initial value problem.) 

__ - 
~ 
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For p = 0.4 the dimensionless growth rate is kMIm ( c )  = 0.95,, and figures 5a 
and 5 b show the contours of modulus and negative relative phase of ~ ( y ,  2). The 
dotted line is the mean-flow isotach for which u = Re (c), i.e. the critical 'level'. 

Figure 5 b is of particular interest. The surface represented by the contours can 
be thought of as a constant-phase surface in physical space, the x-axis being 
directed out of the paper, for disturbance pressure or streamfunction 4' or, 
equally well, transverse velocity v' = ?I.,. The characteristic forwards-down- 
wards slope is evident (cf. figure 8)) indicating that the mode is still basically 
a baroclinic instability, as one would expect. But for a pure Eady wave the phase 
contours would exhibit no other feature, being horizontal straight lines. 

FIGURE 5 .  Distributions in the meridional or yz plane of quantities associated with an 
amplifying wave on the mean flow u = z+0.4sin27ry1; /3 = 0, &In2 = 1.62, m = 1, 
k = k~ = 6-12. In (a), (c), and (d), the contour values are given as fractions of the maxi- 
mum (dimensionless) value, shown on the left. The latter corresponds in each case to 
normalization as in (A 7) of the zeroth approximation yo. The dimensionalizing scales 
may be deduced from appendix A(ii). In  (d), the eddy contribution to  au/at, and (c), the 
transverse horizontal eddy flux of heat (i.e. buoyancy), the values are understood to be 
multiplied by the square of the actual (small) amplitude, times a factor exp(2k Im (c) t ) .  
The thin dotted line in each diagram is the locus of points (y, z )  such that u(y,  z )  = Re (c). 

The actual structure in the horizontal is of the same general nature as that 
given by the first correction term (§  6). The resulting Reynolds stress component 
is indicated by figure 5cl, which plots the convergence - or associated 
contribution to the zonal momentum tendency ut. It is positive where the mean 
flow is already strongest. 

Figure 5 c shows the dimensionless transverse horizontal eddy heat flux VT;. 
It is in the positive y-direction, i.e. down the mean gradient, reflecting the fact 
that the growing wave, being a baroclinic instability, is drawing on mean flow 
potential energy. 

F L M  40 I9 
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The sharpness and prominence of the maximum at z = 0,  y = + in figure 5d 
is a higher order (finite p) effect; in that respect the results go beyond what could 
have been expected from 5 6. The recently published results of Brown (1969a), 
for a compressible atmosphere on a P-plane and a more complicated u profile in 
which the horizontal shear increases with height, show a behaviour that is 
similar in at least some respects. (Note the z-dependence of the y-average of 
Brown's C(K,,K,) = shown in his figure 5, in conjunction with u as 
given by his figure 1 and equation (3.1).) 

The zonal momentum tendency 

Although calculations of -(m)y are suggestive by themselves, they do not 
actually give the second-order (in wave amplitude) rate of change of u, even 
though - (u'w'), is negligible within the quasi-geostrophic approximation. To 
find ut one must also take into account, explicitly or implicitly, the Coriolis 
force due to the slow mean meridional circulation that arises as a response to 
the strong dynamical requirement that mean-flow geostrophic and hydrostatic 
balance continue to hold (Eliassen 1952). 

Calculations of ut and of the stream function Z for the mean meridional 
circulation have been carried out. Their gross features are very much as would 
have been expected from the pioneering results of Phillips (1954) and Eliasen 
(1961) for the cruder two-level model. The mathematical framework involved 
is much the same as in those papers; details are given elsewhere (McIntyre 
1967). 

to it, ut for the case 
u = x+0.4sin2.rry is given in figure 6a;  figure 6b shows the associated E (see 
caption for details); note that the main part of the latter is thermally indirect.? 
Again, the results for ,u, = 0-5 are qualitatively similar. 

The distribution of ut (figure 6a)  is recognizably similar to that of the eddy 
contribution (figure 5d) .  It is still positive around y = 4) but considerably 
reduced at  the top, y = 4, z = 1, because of the Coriolis force associated with E. 
The curiously sharp maximum at y = 4, z = 0,  is present also in the distribution 

This feature assumes considerable interest when we look at the mean zonal 
velocity field found in a recent numerical solution for the wave regime in a heated 
rotating annulus (Williams 1969). This is reproduced in figure 7c  (see caption for 
details). If our result of figure 6 is a representative one, it shows in particular that 
baroclinic waves would initially tend to bring about a sharp peak in the horizontal 

~ 

For comparison with the eddy contribution 

of U t .  

t This corresponds to a small positive rate of transformation of zonal mean kinetic into 
mean available potential energy, C(K,, A,)  (in the notation of Brown 1969a) = +0.4, 
per unit zonal distance, in dimensionless units. Calling the disturbance energies K ,  and A,, 
the other customarily-defined energetic quantities have the values C(A, ,  A,) = 14.,, 
C(A,, K,) = 6.3,, G(K,, K,) = 1 . 4 ;  aA,/at = S.,, aKe/at = &3,, aA,/at = - 1 4 m 0 ,  and 
aK,lat = + 0.6,, so that the waves are bringing about a net increase in zonal mean kinetic 
energy, although at  a rather small rate in this example. One might expect a greater rate 
at  larger horizontal shear. Similar energy transformations are known to take place in the 
westerly wind systems of the earth's atmosphere. 
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dependence of u. near the bottom centre of the cross-section. That is exactly 
what is seen in figure 7c; notice the kinks in the isotachs. It should also be men- 
tioned that the finite amplitude waves found in the numerical solution are indeed 
very similar in spatid structure to the baroclinic waves of linearized theory 
(Williams, op. cit.). 

It would be interesting to extend the calculations to incorporate the Ekman 
suction due to a lower frictional boundary layer. That would be straightforward 
(Barcilon 1964), but has not yet been done for this model (although the more 
sophisticated model studied by Brown 19696 incorporates such an effect, among 
many others). A significant gain in meteorological realism may however require 
other refinements as well, including non-linear effects (Smagorinsky 1964, p. 3; 
Thompson 1959,s 1). 

FIGURE 6. Effect of the amplifying wave on the mean flow, for the same case as in figure 5 .  
(a) Dimensionless rate of change ut of the mean zonal momentum. (b)  Streamfunction 
of the associated mean meridional circulation (to = &, v = - EJ. The contour values are 
to  be understood in the same sense as in figure 5.  The dirnensionalizing scale for E is 
Ro H U ,  x (amp1itude)z x exp {2k Im ( c )  t } .  

To relate the above results to the large scale motions of the atmosphere, note 
that if L is formally identified with 40" of latitude (although p = 0 in these 
calculations) and H = 10 km, and if the wave amplitude is such that the north- 
south velocity has amplitude 10msec-l at  the 'tropopause' and 12msec-I at  
the ground, then u, has respective values of 0-7 and 5-6 msec-lday-l. This is of 
the right order of magnitude to be invoked as a partial explanation of the 
maintenance of the westerly winds (against the frictional retardation that is not 
included in our model). The zonal wavelength is about 4500 x 2n/lc, 5 4500 km, 
and if the vertical shear of the mean flow is U / H  = 2.5 m see-I km-1, then the 
doubling time is (In2/kIm(c)) ( L / U )  = 1-5day. 

8. Concluding remarks 
The perturbation method has proved to be a powerful tool, having permitted 

a significant degree of generalization of our precise mathematical knowledge of 
the non-separable problem (2. l), (appendix D), the computation of accurate 
and physically interesting solutions to it (3 7) and, most important, physical 
insight into aspects of the processes it describes ($8 5 , 6 ) ,  through interpretation 
of the first correction terms. 

19-2 
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FIGURE 7 .  Contours of the (steady) zonal averages of the meridional circulation (Stokes 
stream function), temperature, and zonal velocity in the regular wave regime, with wave- 
number 5, of convection in a rotating annulus, from a numerical solution obtained by 
Williams (1969). The inner cylindrical cold wall r = 2 cm (r' = 0) is on the left of tho 
ineridional cross-section and is held a t  17.5" C; the outer hot wall r = 5 cm (r' = 1) on 
the right, is held at 22.5' C. The contours are evenly spaced, between -0.05347 and 
0.01759 cm3 sec-l in (a),  and between - 0.1090 and + 0.3027 cm see-l in ( G ) .  The thermally 
insulated top and bottom boundaries are 3 cm apart; tho top is stress-free while all the 
other boundaries are no-slip. Tho rate of rotation is 0.8 rad sec-l, and the visoosity, 
thermal diffusivity and expansion coefficients are 1.008 x cm2 sec-1, 1.420 x 10-3 
cm2 sec-l, and 2.054 x lo-* 'C-l. 
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The versatility of this kind of method, within its range of validity, is not con- 
fined t o  the present problem ; it is formally capable of handling any non-singular 
perturbation’ to any well-posed conventional, or unconventional, differential- 
equation eigenvalue problem. In  the present problem, for instance, one could 
incorporate the corrections to (2.1) representing higher approximations to Euler’s 
equations of motion, as has recently been done for the non-geostrophic effects in 
an independent study by Derome & Dolph (1969). In  the latter type of connexion 
especially, the automatic elimination of physically different modes from con- 
sideration (e.g. inertia-gravity waves) is often an advantage, rather than 
otherwise. 

As well as the calculations of 3 7, the results of 6 5 on perturbed stability proper- 
ties bear upon the theoretical interpretation of the baroclinic wave motions 
found in the heated rotating annulus experiments (Fowlis & Hide 1965). The 
lack of a well-defined inviscid short wave cutoff for a wide class of profiles u(y,  z )  
(as in ( b ) ,  figure 3) shows that the concept of an inviscid limit for the so-called 
upper transition curve is probably not well-defined theoretically. (It should be 
mentioned that, worse still, recent theoretical considerations relevant to the 
symmetric regime above the transition curve have indicated that the inviscid 
limiting behaviour of the basic symmetric flow itself is exceedingly pathological 
in many cases of interest (see McIntyre 1969 b) . )  

Two points are worth making about the non-uniform validity over 0 < z Q 1 
of the q representation when k > kN. One is that it is possible, although cumber- 
some, to modify the perturbation scheme so as to give a uniformly valid repre- 
sentation, if yl and c, are allowed to depend on p (McIntyre 1967, p. 202). We then 
lose the convenience of having true power series in p. The other is that in any case, 
the non-uniformity resulting from the present scheme may be quite mild in 
practice, and the y representation still useful. For a recent exploitation of that, 
see McIntyre (1969~) .  

In  $ 6  we discussed the first-order effect of the horizontal shear of a profile of 
form u = z +pul(y) upon a growing Eady wave, and in 3 7 we presented numerical 
calculations to show that the O ( p )  trend persists up to p = 0.5 for the case 
u1 = sin2ny (0 6 y < 1)) and that it does in that case give a qualitative idea of 
the actua.1 mean flow change. Differential advection by any given reasonably 
smooth ul(y) always brings about an O(p) eddy stress that transports zonal mo- 
mentum against the mean flow gradient uly, if the motion is not too closely con- 
strained laterally. (But there is at  least one kind of profile, namely parabolic 
y-dependence, for which the latter proviso is not necessary.) 

A qualitatively similar behaviour of the eddy stress is a feature of the recent 
results of Stone (1969) for a model whose lateral constraints are deliberately 
made ‘slight’; his basic approximation scheme, in contrast to ours, requires uy 
to be small a t  the outsset, via an assumption that the y-scale of the basic flow 
u(y,  z )  is large (as in Miles 1964). Here ‘large’ implies comparison with the scale 
NH/f  of the fastest growing waves, which emerges naturally as a y-scale, as 
well as an x-scale, from Stone’s analysis. His velocity profiles are different from 
ours, the horizontal shear being confined to the upper half of the two-level model 
used. 
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Finally, it should not be forgotten that by our particular choice of zero-order 
solution we have confined our attention to a particular kind of instability. The 
reader is referred to Brown ( 1 9 6 9 ~ )  for some interesting results not subject to 
that restriction. 
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Appendix A. Theoretical background 
(i) Dynamics of the baroclinic instability 

The following brief description is not novel, nor is it  intended to replace dis- 
cussions such as those given by Bretherton (1966b) and, from a somewhat 
different point of view, by Holmboe (1959). But it quickly makes the instability 
plausible, and gives a substantially correct feel for the dynamics. 

As was said in 5 2, the fluid is stably stratified with buoyancy frequency N ,  
but possesses available potential energy associated with a small slope (&/lay)p of 
the lines of constant density in a meridional or yz plane. To fix ideas, suppose 
first that (az/ay),, is positive and constant. 

Imagine an initial disturbance involving a small transverse horizontal velocity 
v’ with a wave-like x-dependence, wavelength 2nLW say. If, hypothetically, 
buoyancy forces represented the only constraint on the disturbance, fluid ele- 
ments drifting to the left or to the right of the main current would just tend to 
move along the sloping constant-density surfaces. But other effects are of course 
present; it is only because of one of them, the Coriolis force, that the undisturbed 
constant-density surfaces can slope at  all. If these other effects were such as to 
make fluid elements move more nearZy horizontally, i.e. on paths with positive 
slope less than ( i ? ~ / a y ) ~ ,  then potential energy could clearly be released. The 
buoyancy force could do work against whatever was causing the fluid particles 
to move on their shallower trajectories. 

Now the instability is possible because sideways-drifting fluid elements can 
indeed be made to move along such paths, in the simple situation we are con- 
sidering, by a combination of two things. The first is the presence of rigid 
boundaries that are either horizontal, or nearly so, with slope less than (&/ay)p.  
The second is the resistance to horizontal divergence that arises from a sufficiently 
strong Coriolis effect f; this ‘rotational stiffness’ has the effect of making the 
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kinematical constraint due to a boundary felt throughout a substantial depth 
( ~ f )  of fluid (although not in the simple Taylor-Proudman sense appropriate 
to a homogeneous fluid). The penetration height scale is in fact fL,/N (Walin 
1969). 

were allowed to vary with height, a level where (az/ay)p is 
relatively small could play the same role as a rigid boundary (see Green 1960, 
$ 8 ;  McIntyre 1 9 6 9 ~ ) .  

In  either case, it is the resulting kinematical-rotational constraint that gives 
rise to the pressure field against which the buoyancy force is enabled to do work. 
From the point of view of vorticity, the buoyancy force can be thought of as 
slowly stretching or compressing the very strong tubes of absolute vertical vor- 
ticity of the rotation f ,  the effect of which is described by the dominant term 
f awl& in the vertical vorticity equation. 

The work done by buoyancy, then, appears as kinetic energy of the horizontal 
relative velocities associated with the resulting ‘ spin-up ’ relative vorticity. To 
a first approximation, the Coriolis force does the actual accelerating. (One should 
note the complete contrast with e.g. i3olberg’s symmetric baroclinic instability 
(see McIntyre 1969a and references), a type of essentially non-geostrophic 
sloping convection in which buoyancy can contribute directly to the acceleration 
of a fluid element.) 

The horizontal velocities produced by vortex-tube stretching can indeed re- 
inforce the original disturbance, giving exponential growth, provided that there 
is an appropriate phase change with height. It is found that the surfaces of con- 
stant phase of v’ must slope forwards-downwards, so that az/ax < 0, i.e. they 
slope in the sense ‘opposite to that of the velocity profile’. To see this, and to 
understand among other things the necessary role of differential advection by 
the vertical shear uz, a more detailed description is needed (see e.g. Bretherton 
1966b). 

(ii) The basic formulation 

This is well known (Phillips 1963; Pedlosky 1964a) and will be sketched only 
briefly, for the Boussinesq liquid case. First, the hydrostatic and geostrophic 
approximations are made. The latter signifies an approximate balance between 
horizontal pressure and Coriolis forces, the condition for which is formally ex- 
pressed by the smallness of the Rossby number, 

Note that if 

RO = UlfL  < 1, (A 1)  

where U is a characteristic horizontal velocity and L a horizontal length (taken 
for convenience as the channel width, in the present problem). The time scale is 
assumed 2 L/ U .  In  this approximation the departure @ from the horizontally- 
averaged hydrostatic pressure becomes a stream function for the dimensionless 
horizontal velocities, after + is made dimensionless by the scalefp, UL, where po 
is an average density for the whole (Boussinesq) fluid. The approximate velocities 
(scale U )  are then 

in the x and y directions respectively. The vertical velocities are small of order 

(A 2) u = - @  ?I’ v = 1c.,, 
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(BoHIL) U ,  but important because of vortex-tube stretching. We assume 
E = f 2L2/N2H2 - 1, in the formal limit Ro + 0 implied by (A 1). 

Under all the above assumptions it can be shown that N 2 ,  and thus c, can be 
taken as a horizontal and time average and thus as a function of height z only, 
and that the vorticity equation for inviscid adiabatic motion can be reduced 
to a single approximate equation involving the vertical component only of the 
dimensionless absolute vorticity, Ro-l+ ?c.,, + $gv + O(Ro): 

(A 3) 

The E term represents the stretching of vertical vortex tubes. The vertical velocity 
is related to y9 through the adiabatic equation. To sufficient accuracy, 

a a w = - e  (; -- @I&+@.&) @z. 

The scale for w is (RoHIL) U .  In  virtue of the hydrostatic relation, - $z represents 
the local density anomaly due to the motion. In (A3) the quantity in square 
brackets is related to Ertel’s potential vorticity in the manner explained by 
Charney & Stern (1962, p. 163) and will be called a ‘quasi-potential-vorticity’. 

The eigenvalue problem for normal-mode disturbances to the mean flow 
u(y, z )  is now obtained by posing 

lJ 
q! = -1 u ( y ,  z )  dy + $‘; $’ = Re {&,I, z )  eik(x-ct)} (A 5) 

where, formally, /$’I < 111.1. The dimensionless wave-number k is considered 
real, but c and q(y, x )  may be complex. Then (A 3) yields the linearized equation 
(2.1~4). The coefficient qU that appears in (2 . la )  is the transverse gradient of 
mean quasi-potential-vorticity, 

4v = P - (%), - UylJ ; (A 6) 

,5 = d(Ro-l) jdye const. is included to  represent the earth’s planetary vorticity 
gradient or north-south variation off, where relevant. The boundary conditions 
for ( 2 . 1 ~ )  are that w and v = $; vanish on horizontal and vertical boundaries 
respectively, which yields (2.1 b )  and (2.1 c). 

(iii) Eady ’s solution 

When u = z ,  p = 0, E(Z) = constant, so that q, = 0, it can easily be shown that 
(2.1) has the following closed form solutions, which were first described by Eady 
(1949): 

y,O,(y,z) = sinmTl.xm(x), 

corn = + &  &~;~[(a,-cotha,) (am-tanham)]), 

where 

and K, = 2a$, = e-&(k2+m2n2)6 (m = 1,2, ...). 

x,,(z) = K,C~,  cosh K,Z - sinh K,Z 

For each integer m these solutions represent either an amplifying-decaying pair 
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of waves with c, = Re (corn) = 6 ,  or a pair of neutral waves (c = c,, 2 and < .;), 
according as 

am < or 2 ctN, = 1.1997(a, = cotha,). 

Thus there is a short-wave cut-off to the instability, at a critical neutral wave- 
number k = k,  = (4-94 - m2n2)4, if k, is real. For any m such that k, is real, there 
is a well-marked maximum growth rate kci [ci = Im (con)] at some k < k,: 
k = kM,  say. The largest of these maxima occurs, if any occur, for rn = 1. Some 
numerical values for m = 1 are shown in table 1. 

6/7T2 6 k M  K ci k M C i  

0.9119 9 4.392 1.800 0.1677 0.7366 
1.6211 16 6.117 1.719 0.1787 1.0931 

TABLE 1 

For the long waves in the atmosphere (wavelength 6000 km), these dimensionless 
maximum growth rates typically correspond to doubling times in the vicinity 
of 2 days. The structure in an xz plane of an unstable wave is shown in figure 8, 
from Eady (1949). 

-7r 0 +h (a) 

1 

= 

0 

FIGERE 8. (a )  Negative relative phases and ( b )  amplitudes of an amplifying baroclinic 
wave on $he simple velocity profile u = z, from Eady (1949). The negative-phase diagrams 
give the actual side view of the wave if the II: axis points toward the right. 
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Note that an unstable x,(z) possesses symmetry about z = $ that is obscured 
by the otherwise convenient form given. If we define a symmetrical co-ordinate 
x ,  = x - t ,  then xm is equal to a complex constant times 

cosh K, x, + (imaginary constant) x sinh K,x,. 

porn = p& = sin mny . (a& - 1)i  cosh 2a,x,. 

(A 9) 

At a critical neutral point k = klv we have corn = 4, and 

(A 10) 

The short neutral waves (k > kN) are asymmetrical. For k k,, each is associated 
with one horizontal boundary exclusively, because of a small penetration height 
scale fL,,/N, < H .  

Note that if generalized functions are admitted as solutions, there is also, for 
each k, a continuous spectrum of singular neutral modes with 0 < c 6 1 (Ped- 
losky 1 9 6 4 ~ ) .  At z = c, q~~ has a jump discontinuity. These resemble the singular 
modes discovered by Rayleigh (1895) and used by Orr (1 907) to  solve the initial 
value problem for small disturbances to plane Couette flow. 

The following identities are useful; we drop the suffix m: 

K2Co( 1 - C g )  + 1 = K Goth K ,  

{ 1 - K ~ C ; }  (1 - K ~ (  1 - cn)2} = /c2 cosech2 K ,  

(A 11) 

(A 12) 

(A 16) 

where denotes the result of replacing co in x by (1  - co). 

Appendix B 
(i) DeJinition of B,, 4 

It is convenient first to substitute the expansion (3.271) into (2 . la ,  b ) ,  divide by 
(z-c, , ) ,  and rearrange. (If cg is real it is necessary to assume that u1 is analytic 
in x and to go into the complex plane, as discussed in 3 4.) There results 

L(P) = Y z z  + “l(Y2/1/ - k2p)  

D(p) P)$-- P 
Z - Cg 
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We then introduce (3.2a) and require that (B 1)  be satisfied 
order $ ( l  = 0, 1, ...), giving (3.3). The right-hand sides 4, 
cursively by I, = Bo = 0 and, for I >, 1, 

299 

separately at each 
Bl are defined re- 

gives zero, by convention. For convenience, derivatives of pz have been 

eliminated at  each stage, by the use of (3.3), as happens to be possible in this 
problem. 

(ii) The generalized Green’s function 
It is a straightforward task to obtain the solution to (3.5) and (3.6) as a sine 
series in y ,  whose coefficients are functions of z with discontinuities in their first 
derivatives at  z = 6. Note that (B depends on m, both through the operator D, 
in which the value of co is given by (A 7 ) ,  and through the presence of yo in (3 .5a)  
and (3.6); thus we write 

m 

n=l 
@ = @,(y, z ;  7, C )  = 2 2 sin nn-y sin nn-7 G&(z; 5). (B 3 a )  

For n =j= m, it is found that 

Y) 
- [ K , C ~ ,  cosh K ~ x . ~  - sinh K,ZJ [K,( 1 -corn) cosh K, (1  - z>) - sinh K, (1 - z,)] - 

K: sinh K,[cOm( 1 -corn) + K ; ~  - K L ~  coth K%] 
3 

(B3b) 
where z< = min ( z ,  c ) ,  z ,  = max ( z ,  c ) ,  (B 3c)  

with the obvious interpretation if z and 5 both lie on a complex contour rz such 
as that in figure 1, and where (cf. (A 7 ) )  

C K ~  = k2 + n2+. 

This is a one-dimensional Green’s functioii in the usual sense. For n = m ,  

G%!; c) = A’x,(z) [KrnCZmCsinh K ~ ‘ < -  (C-c,,) coshK,Cl 

-(1/Km)Xm(z<)COShK,Z, +x,(C) xfunc(4, (B 3 4  

if corn is complex, 
1 1 ___ 

&ICOrnI2 - KkCorn(1-Com)’  

2 , ( l - C o r n ) ~ - l  
2 2  if corn is real. 

KL[K,CO,( 1 - + 3~,( 1 -corn) - 11 ’ 
The contribution to G$ not explicitly written out may be ignored when @,,’ is 
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used as in (3.4b)) that is, with [as the dummy variable, in virtue of the solubility 
condition. ( The extra contribution consists of the symmetrizing complement of 
the first line of (B 3 4 ,  plus a further term proportional to x&) xm([) . )  

Appendix C. The expansion at the Eady neutral point k = kN 
Posing the expansions (3.7) leads to the sequence, dropping the superscript N ,  

a v l )  = 4, (C la) 

D(p,) = B, on x = O , l ,  (C l b )  

(C 14 I p71 = 0 on y = O , l ,  

in which, this time, I0 = Il = B, = 0,  and z,B1 = cIyQD, where z , ~  = 2-4. The 
formula (A 10) gives yo.  The first-order problem is now automatically soluble 
for yl, because of the sa,me symmetry that was associated with the breakdown 
of the p expansion. In  fact, noting that (C 1 a) for I = 1 is satisfied by yQz, and 
recalling (A 8), we find that 

c1 voz 2aNc1 sinmny , sinh 2aNx,. 
p 1 = 2 >  %I - = (a&- 1)rf 

A point of interest that now emerges is that c1 will not be determined until the 
problem for rp2 is considered, and so on. 

In the mme way as before, recursion formulae give 4 and Bl for 1 2 1. With 
the convention q ~ . - ~  = I& = I, = B, = 0, we can show that for 1 3 1 

1 - 2  

j=1 
(C 3a) 

(C 3b)  

1 
' S  4 = 'j' 4-i - 4 - 2  - '- qlg Vz-27 

zS Bl = xS Bja) + clyOg 

(As before, summations with reversed limits are zero; (C l a )  has been used.) 
Bid' will be defined below, by (C 3c, d) .  It is zero for 1 = 1, and for 1 2 2 it will 
involve c , - ~  but not el, and will turn out to be completely determined at  the 
current (Ith) stage. The term c,po, will not be determined, since c, disappears from 
the solubility condition by symmetry, as before. That condition is 

But we are free to choose since by the same token it could not have been 
determined previously. It will turn out that (C 4) can always be satisfied by just 
one such choice (apart from a sign ambiguity when I = 2 ) .  The solution p, which 
then exists can be split into two parts. One arises from the c, term in (C 3 b ) ,  and 
is just cl/cl times (C2). The remaining part 371') is independent of c,, and will thus 
be determinate at  the present stage : 
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The whole solution, then, is 
cz Poz yz = q7p + - a%-- 1' 

This agrees with ( C 2 ) ,  since y';) = 0. 

o f  Bj"). It will be convenient to define first, for 1 2 2, 
We can now complete the recursive definition of Bz by supplying the definition 

- Ul(BZ-2 +z,1%2) + 741sPz-2. (C 3c) 

Then, using (C 6 a )  above, (C 3b) ,  (C 2), and (C 1 b) ,  we may define B\d) and thence 

where 
1 if 1 = 2, 

2 if 1 2 3 .  

Finally (C4) can be re-written, after a little more manipulation, to give cl-l 
explicitly : 

(C 66) 

The expansions (3.7) are now completely defined by (C Ba, b) ,  the recursive 
definitions (C 3 4 ,  and the definition (A 10) of yo. It may be verified that the 
formulae are all explicit at  each stage. (Note that BF) does not depend on cl.) 
After the Zth stage we know yo, yl, ..., q ~ ~ - ~ ,  @), and co, el, ..., cz-2 (but not cz). 

Appendix D. Some mathematical details 
We give here some of the details, for Ic $: kN,  o f  the mathematical justification 

that is possible using elementary analysis. First, uniform convergencet is estab- 
lished for lpl < some sufficiently small po > 0. Then we prove that the result of 
substituting the series back into (2.1) is meaningful, and thence that the series 
do actually represent a solution of (2.1) for appropriate u andq, of the form (3.1). 

We thereby prove, incidentally, the existence of solutions to (2.1), under much 
more general conditions than those permitting explicit separable solutions. 

When co is not real ( I c  < klv in the present problem), nothing is assumed about 
u1 ( y ,  z )  except sufficient differentiability, implying boundedness in the closed 
domain of the problem. When co is real ( I c  > kN) ,  u1 is further assumed analytic 
in z ,  and the domain of the eigenvalue problem and o f  the various integrals under- 
stood to be some suitable complex 9 ($4). 

t The author did not see the possibility of a straightforward proof of convergence until 
after the completion of much of tho work reported in this paper, when he came across the 
essential ides in the book by Titchmarsh (1958, p. 226). Titchmarsh also states a perturba- 
tion formula that amounts to a generalized Green's representation ((19.5.5), p. 224), 
although he does not indicate either its conceptually simple nature, or its practical im- 
portance for non-standard types of eigenvalue problem. 
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(i) Uniform convergence in 9 for suficiently small lpl 

The proof is straightforward, although to obtain sharp estimates for the radius 
of convergence of, say, the c expansion, and to avoid obscuring the fact that the 
latter cannot, obviously, depend upon details of the choice of 9 if u1 is analytic, 
one would have to use methods deeper than the direct one used here. Therefore 
no attempt is made to estimate particular radii of convergence numericdly, or 
to construct refined inequalities. 

The essence of the proof is to start by considering a series like Xul,d> where the 
a, are defined recursively by specifying u, > 0 and then defining 

M and N being positive constants. The radius of convergence of Ctclpl is at, least 
1/(4Ma,+ 2 8 )  as will now be shown. 

First, consider the function 

g(p)  = -L 2M [ 1 - (1 -$I, 
which has the expansion OD 

9 = z d d ,  
2=1 

say, whose radius of Convergence is evidently p. Now from (D 2), 

But for p < p the coefficients of the above power series expansion of g2 may also 
be obtained by multiplying the (absolutely convergent) series for g by itself. 
Comparison with (D 3)  then gives the relations d, = (4Mp)-l and 

1-1 

d, = M - g d j d l - ,  (I 3 2) .  
j=1 

This shows that the power series whose coefficients are defined by (D 4 ) ,  with d, 
specified, has radius of convergence p = (4Mdl)-l .  (The function g was of course 
arrived at  in the first place by considering the formal product (Cd,,@..) 

If now we choose d, = (a, + N / 2 M )  ( > O),  then (D 1) and (D 4) imply 

(a,  < dl), u2 6 d,; a, < d,, .... 

Therefore the radius of convergence of Culpz, where the positive coefficients 
a2, a,, . . . are related to a, by (D l), is at least 

1 
4Mu, + 2N , 

as was asserted. (Clearly this is already a crude estimate.) To apply these ideas 
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to prove convergence of ZpU"yz, Zpk,, we construct first the series Zal,uz, Cb,pl, 
defined by a scheme slightly more general than (D l),  of the form 

} (D5) 
al = Mf)CajaZpj  + ML2)Cajb,-j + ME)Cbjb,-j + N',1)a,-, + NF)b,-,, 

b, = M~1)~a ja , - j+1M~2)~a jb ,_ j+M~3)Cbjbz - i  + Nh1)a,-,+N~2)bl-,, 

where a, > 0, b, > 0 have been specified, and the summations are taken from 
j = 1 to j = 1 - 1. It is then easy to verify that the radii of convergence of the 
series Zal,ul, 2b,,uu" are each at  least 

1 
4M max (a,, b,) + 2N 

where 
3 

i = l  
2 

M = x max (M:), 

We are now ready to consider the formulae (3.4), (B 2), giving y, and c,. A hat 
over a symbol, as in 4, will indicate an upper bound, taken over all (y,z) in 9 
where relevant: for example, 141 5 4 ( =  const.). In estimating the Green's 
representations (3.4b) we note that although @(y, x ;  r , [ )  has a logarithmic 
infinity at (y, 5 )  = (y, z) ,  its integral with respect to y or y is finite, and likewise 
the integral of 18 I. Indeed, there are finite constants GI, GB such that for all (y, z )  
in B 

/ / I @ l W C  G GI, /d& g=0 18) G G,. (D 7) 

Then from (3.4b) 

)ptl < G,~+G,B,  = F1, say, appropriately. (D 8) 

The other bounds t,, 4, B,, Bi, are defined in a similar way, using the straight- 
forward estimates that can be written down from (B2) and (3.4). Writing 
Z = ( x  - co)-l and using (D 8) t o  eliminate reference to el, we have the following 
relations, which define the bounds recursively : 

lC,l < 21 = E@o(&+ 2&, (D 9) 

where 

In  (D 12), reference to 4 has been eliminated by means of (D 9). 
All we need do now is to note that the pair of recursion relations (D 10) and 

(D 11) are of the form (D 5), after elimination of ej and Bj using (D 9) and (D 12). 
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(If 4 is identified with a, and 6 with b,, then M&3) is zero but the remaining M’s 
andN’sarenot.)Thisshowsthat&and.@and,invirtueof (DS), (D 9), and (D la ) ,  
el and el, are the (constant) coefficientsof majorant series with finite (and constant) 
radii of convergence. Thus uniform convergence is proved, for < some finitep,. 

(ii) Proof that the series solve the perturbed problem 

The analysis just given can be extended to prove that {XpZql, Cpzc,), for any IpI < 
some finite p,, does solve the eigenvalue problem associated with u = z+pu,, 
qu = pqlll. (Note the corollary that existence of a solution is then proved.) 

The formalism already ensures that the series satisfy the equation and the 
boundary conditions term by term. It is sufficient, then, to show that all the 
infinite series that arise on back substitution are absolutely and uniformly con- 
vergent over 9, since they are then immediately meaningful in the context of 
the boundary-value prob1em.t For the z boundary condition this follows from 
the term-by-term balance, since there is only one series involved, Xpzplg, whose 
convergence has not been investigated. But in connexion with the differential 
equation we must show independently that one of Xlpzvluu\, C IpzplzzIis uniformly 
convergent. It would be straightforward, if tedious, to do this by extending 
the foregoing proof to include bounds on 1vZu1 and lrplulll say, as well as on (pi\. 
A little more care is needed in estimating the Green’s representations for the 
derivatives; bounds on the first and second y-derivatives of u1 and ql?, will now be 
involved. 

Alternatively, suppose that u l ( y , z )  is an analytic function of z whose singu- 
larities are bounded away from r2, uniformly over B. Then, since also (y, co) can 
be supposed bounded away from 9, the formulae show by induction that vl(y, z )  
is analytic in z and that its x-singularities are also bounded away from re, uni- 
formly in 9, and in I also. Thus for any x‘ on rZ, q1 has an expansion in powers of 
( z  - z’) whose radius of convergence 2 some number that is non-zero and inde- 
pendent of 1 as well as of y and x ‘ .  Also, by a trivial extension of the previous 
analysis, Cp‘lpl(z) has p-radius of convergence greater than some constant po,  
for anyz within some neighbourhood of z‘. Therefore X p z ~ l  can be further expanded 
as a double series in powers of p and ( z  - z’), absolutely convergent for Ipl < po 
and small but finite Ix -2 ’1 .  Term-by-term differentiation with respect to z ,  
holding p at any value within lpl < p,, then gives the second (or any) derivative 
with respect to x near z = xl, as another absolutely convergent double power 
series. Since this can be rewritten as Cp1y,2z, the latter must also be absolutely 
convergent for lpl < po, when z = x‘ in particular. The convergence is uniform 
over 3 as required, since po can be taken independent of y and z’. 

7 If the perturbation method were being used to account for higher approximations to 
the equations of motion, justification would not be quite so straightforward. In the inde- 
pendent analysis of rion-geostrophic effects by Derome & Dolph (1969), for instance, the 
boundary conditions force non-uniformity of convergence at corners such as y = z = 0. 
Although the series are not then immediately meaningful globally, one would still expect 
pointwise convergence to a solution of the full problem. Indeed, under suitable aaaump- 
tions, this would follow from considerations of analytic continuation in p. 
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